An Extended Phenacene-type Molecule, [8]Phenacene: Synthesis and Transistor Application
نویسندگان
چکیده
A new phenacene-type molecule, [8]phenacene, which is an extended zigzag chain of coplanar fused benzene rings, has been synthesised for use in an organic field-effect transistor (FET). The molecule consists of a phenacene core of eight benzene rings, which has a lengthy π-conjugated system. The structure was verified by elemental analysis, solid-state NMR, X-ray diffraction (XRD) pattern, absorption spectrum and photoelectron yield spectroscopy (PYS). This type of molecule is quite interesting, not only as pure chemistry but also for its potential electronics applications. Here we report the physical properties of [8]phenacene and its FET application. An [8]phenacene thin-film FET fabricated with an SiO2 gate dielectric showed clear p-channel characteristics. The highest μ achieved in an [8]phenacene thin-film FET with an SiO2 gate dielectric is 1.74 cm(2) V(-1) s(-1), demonstrating excellent FET characteristics; the average μ was evaluated as 1.2(3) cm(2) V(-1) s(-1). The μ value in the [8]phenacene electric-double-layer FET reached 16.4 cm(2) V(-1) s(-1), which is the highest reported in EDL FETs based on phenacene-type molecules; the average μ was evaluated as 8(5) cm(2) V(-1) s(-1). The μ values recorded in this study show that [8]phenacene is a promising molecule for transistor applications.
منابع مشابه
Synthesis and transistor application of the extremely extended phenacene molecule, [9]phenacene
Many chemists have attempted syntheses of extended π-electron network molecules because of the widespread interest in the chemistry, physics and materials science of such molecules and their potential applications. In particular, extended phenacene molecules, consisting of coplanar fused benzene rings in a repeating W-shaped pattern have attracted much attention because field-effect transistors...
متن کاملFabrication of high performance/highly functional field-effect transistor devices based on [6]phenacene thin films.
Field-effect transistors (FETs) based on [6]phenacene thin films were fabricated with SiO2 and parylene gate dielectrics. These FET devices exhibit field-effect mobility in the saturation regime as high as 7.4 cm(2) V(-1) s(-1), which is one of the highest reported values for organic thin-film FETs. The two- and four-probe mobilities in the linear regime display nearly similar values, suggestin...
متن کاملTransistor Properties of 2,7-Dialkyl-Substituted Phenanthro[2,1-b:7,8-b′]dithiophene
A new phenacene-type molecule with five fused aromatic rings was synthesized: 2,7-didodecylphenanthro[2,1-b:7,8-b']dithiophene ((C12H25)2-i-PDT), with two terminal thiophene rings. Field-effect transistors (FETs) using thin films of this molecule were fabricated using various gate dielectrics, showing p-channel normally-off FET properties with field-effect mobilities (μ) greater than 1 cm2 V-1 ...
متن کاملSuperconductivity in Sm-doped [n]phenacenes (n = 3, 4, 5).
We report here the discovery of a new aromatic hydrocarbon superconductor, Sm-doped chrysene, with Tc ∼ 5 K, and compare its behavior with those measured in the full series of Sm-doped [n]phenacene superconductors, with n = 3, 4, 5, thus determining the trend of Tc as a function of the number of fused benzene rings and for an odd or even number of units.
متن کاملExtended-Gate Field-Effect Transistor based Sensor for Detection of Hyoscine N-Butyl Bromide in its Pharmaceutical Formulation
A novel recognition method for selective determination of the hyoscine N-Butyl bromide (HBB), an antispasmodic agent for smooth muscles, was devised using extended gate field-effect transistor (EG-FET) as transducing unit. For this purpose a PVC membrane, containing hyoscine n-butyl-tetraphenyl borate ion-pair as recognition component, was coated on Ag/AgCl wire, which was connected to the exte...
متن کامل